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1. Introduction 

Fundamentals of thermodynamics were developed during two centuries.  The primary notion of 
thermodynamics is the notion of the equation of state (EOS), which was originally associated 
with something later coined as the thermal EOS.  Later, it was changed and replaced with the 
concept of one of the thermodynamic potentials referred to canonical variables. There are several 
reviews describing the evolution of the topic and its current state-of-the-art (1‒5). 

The role of the EOS can be played by (1) the internal energy density  ,E V S , referred to as its 

canonical variables―the specific volume V  and entropy S ; (2) the free energy density  

 ,F V T , referred to as its canonical variables―specific volume V  and absolute temperature T ; 

and (3) the entropy density  ,S V E , referred to its canonical variables―specific volume V and 

the internal energy E , etc.  

Finding the appropriate EOS is very important for any discipline using continuum description of 
media.  Phenomenological thermodynamics suggests some canonical experiments to determine 
the required thermodynamic potential.  The recommended methodology guarantees 
thermodynamic consistency of the model.  In other words, this methodology guarantees that the 
model obeys the First and Second laws of thermodynamics.  

The idealized experiments, recommended by theoretical thermodynamics, are not easy or even 
impossible to realize practically (e.g., when dealing with planets or celestial bodies).  Therefore, 
different theoretical and experimental techniques for establishing the EOS have been suggested.  

A combination of different approaches and data can easily violate thermodynamic consistency of 
newly suggested models.  For instance, the classical models of the ideal and van der Waals gases 
are thermodynamically consistent with the assumption of the heat capacity VC , depending solely 

on the absolute temperature, and are incompatible with the more general models of heat capacity. 
As it was demonstrated in Davis (6), the classical models of the Mie-Grüneisen EOS are 
thermodynamically consistent with the assumption of the heat capacity VC , depending solely on 

the entropy density S , and are incompatible with more general models of heat capacity.  

Contrary to the essentially canonized basic principles of thermodynamics, the demand for novel 
EOS always remains strong.  This happens because of the permanent appearing novel substances 
or because of the necessity of working within extended ranges of thermodynamic parameters.  

Development of novel EOS is unthinkable without further progress of the phenomenological 
thermodynamics itself.  No single EOS can work for all substances and all ranges of 
thermodynamic parameters.  The progress and revision should take into account novel types of 
experiments, not just those idealized experiments considered in the classical textbooks. 
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Thermodynamics and theory of shocks contain strong mathematical cores which should also be 
further developed.  The models appropriate for deep mathematical analysis are certain 
abstractions of the practically used EOS.  By sacrificing some details, mathematical analysis 
allows a much deeper analysis.  One such model was analyzed in Courant and Friedrichs (7).  
We suggest its generalization in the next section.  

2. The Suggested Model 

The generalized Courant-Friedrichs (gCF) EOS is defined by the following relationship:  

        ,E V S S V V    , (1) 

where V  is the specific volume, S  is the specific entropy, E  is the specific internal energy, and  

     , ,S V V    are three functions.  The functions      , ,S V V    should be specified 

based on available experimental data.  Thus, we arrive at the EOS based on three functions of 
one variable each―  S ,  V , and  V . 

The gCF EOS satisfies the following differential equation: 

 
 2 ,

ln 0.
E V S

V S S




  
 (2) 

The gCF EOS generalizes the Courant-Friedrichs (CF) EOS with the separable internal energy: 

      ,E V S S V    , (3) 

 
which is specified by two functions―  S and  V (7).   

The CF EOS found various applications in modeling shocks in condensed liquid media.  It is not 
only useful for practical needs but also permits deep mathematical analysis; this cannot be 
overestimated.  As it was obvious from the very beginning, the CF EOS has limited applicability.  
For instance, the Grüneisen parameter associated with this model vanishes identically.  Because 
of this, we think it makes sense to analyze the properties and practical applicability of the gCF 
EOS (equation 1).   

Using equation 1, we arrive at the following formulas of the absolute temperature  ,T V S and 

pressure  ,P V S  for the gCF EOS: 

              
, , , .

d S d V d V
T V S V P V S S

dS dV dV

  
      (4) 
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According to equation 4, the absolute temperature appears to be the product of the functions of 
S  and V . 

Also, using thermodynamic identities, we arrive at the following formulas of the heat capacity at 
constant volume  ,VC V S  and the Grüneisen parameter  ,V S : 

 
 

 1
ln

,V

d Sd

C V S dS dS


 , (5) 

and 

    ln
,

d V
V S V

dV


   . (6) 

 
Equations 5 and 6 show that for the gCF EOS, the heat capacity VC  appears to be the function of 

the entropy S only, whereas the Grüneisen assumption is satisfied automatically: 

        , , ,V VC V S C S V S V    . (7) 

 
It was demonstrated in reference 6 that independence of   of S  and independence of the heat 
capacity of VC  of V  are mutually related facts because of the universal and elegant 

thermodynamic identity:    

 
 

 
, 1

,V

V S

S V V C V S

 
 

 
. (8) 

As any thermodynamic function of state, the Grüneisen function (parameter) can be expressed in 
different sets of thermodynamic parameters.  It can, of course, look different depending on the 
choice of independent thermodynamic variables.  Among the many presentations of the 
Grüneisen parameter are the following two (8): 

        , ln ,
, , , .

ln

P V E T V S
V E V V S

E V

 
    

 
 (9) 

Per the terminology of reference 7, equations 1 and 3 should be treated as the complete EOS, 
whereas equations 5–7 can be treated only as the incomplete EOS. 

In the case of constant heat capacity VC , we get 

  
*

,V

S S

C
VS C e



   (10) 

and the gCF EOS can be presented in the following form: 
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      
*

, .V

S S

C
VE V S C e V V



     (11) 

Thus, in this case, the gCF has only two functional degrees of freedom. 

3. Recovery of the Functions  S ,  V , and  V  From Experiment 

The completeness of the EOS is an important feature.  On the other hand, the completeness of 
the EOS in no way guarantees its practical usefulness.  It only guarantees its compatibility with 
the First and Second Laws of Thermodynamics.  This compatibility is important but not 
sufficient for ultimate success.  The EOS can be useful not being complete and can be complete 
not being useful.  

Real usefulness of the EOS comes from comparing it with experimental data.  Fortunately, the 
generalized gCF has three functional degrees of freedom―  S ,  V , and  V , which 

matches various existing experimental data.  If the data is reliable and the experiments are 
chosen wisely, there is a reasonable chance of obtaining useful EOS.  

What is the useful set of experiments?  It depends on the intended applications.  For instance, 
measurements of the heat capacity at 0  , however precise they are and however useful they are 
for the low-temperature physics, can be quite misleading if the intended application deals with 
modeling a supersonic projectile penetrating through a thick metallic or ceramic wall and vice 
versa. 

For determining functions  S ,  V , and  V , each set of experiments requires its own 

formula of conversion.  Next, we provide one example of the experiments, giving the flavor of 
the typical formulas of the conversion. These formulas are basically certain integral operators. 

Let us first choose the reference configuration  * *,V S .  We will also use the superscript “*” for 

all quantities relating to the referenced configuration.  Naturally, in order to recover the three 
functions, we need three sets of measurements.  We will consider the following set of canonical 
experimental measurements.  

Let the first experiment be the isochoric heating at *V V .  It determines the heat capacity 

 VC S  at constant volume as a function of the entropy density.  Let the second experiment be 

the static adiabatic loading corresponding to the reference value *S S of the entropy density. 
Let  * *

S ST T V  and   * *
S SP P V  be the values of the absolute temperature and pressure on that 

very adiabata. 
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Then, the measured functions  VC S ,  * *
S ST T V , and  * *

S SP P V  determine the functions 

 S ,  V , and  V  and recover the corresponding gCF EOS.  The recovered equation 

reads as follows: 

    
 

 
1

*

* *

* * *,
V

S

d CS V

S S

S V

E V S T V d e d P E


   



 

   , (12) 

where *E  is the internal energy density in the reference configuration. 

In other words, the formulas of conversion for this set of experiments read 

  
 

       
1

*

* *

* *, , .
V

S

d CS V

S S

S V

S d e V T V V d P


      



 

    (13) 

In the case of constant heat capacity, the EOS (equation 12) can be rewritten as follows: 

      
*

*

* * *, .V

S S V
C

V S S

V

E V S C T V e d P E


      (14) 

 
When the Hugoniot adiabata data (9, 10) is used instead of the data relating to the static adiabata, 
the inversion formulas (equation 13) should be considerably modified.  Additional important 
aspects should be considered when dealing with substances undergoing phase transformations 
(see references 9–11). 

4. Discussion and Conclusion 

Following the footprints of Courant and Friedrichs (7), we suggested a novel complete EOS 
called the gCF EOS.  The gCF EOS depends on three functions of one variable.  

For the case of two available experiments, isochoric and adiabatic loading, we established 
explicit formulas (equations 12 and 13), which converted the experimental data into the gCF 
EOS.  The conversion was reduced to using certain integral operations.  These integral 
operations are stable regarding small perturbations of experimental data. 

The thermodynamic Grüneisen parameter should be clearly distinguished from the Grüneisen 
assumption and the Mie-Grüneisen EOS.  The Grüneisen parameter for any two-parameter media 
is a thermodynamic function of state, i.e., function of any two chosen thermodynamic 
parameters.  It is a meaningful notion applicable to any two-parameter media.  The Grüneisen 
assumption is the hypothetical statement applicable to a limited set of substances.  The 
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Grüneisen assumption claims that the Grüneisen parameter is a function of the specific volume 
only.  The Mie-Grüneisen EOS is the incomplete EOS based on the Grüneisen assumption. 

In fact, the Mie-Grüneisen EOS is the canonical example of the operational EOS. It can be 

presented in the following form:   

       
,

V
P V E P V E E V

V 


       ,                                   (15) 

where the functions  P V ,    ,E V  and  V are functions to be determined from 

experimental data.  It is the example of the incomplete EOS for hydrocode.  Indeed, as any EOS, 

it is a function of two variables—V and E .  At the same time, equation 15 defines an operator 

transforming experimentally measured functions  P V  and  E V  into an incomplete EOS.  

For the gCF EOS, the Grüneisen assumption is automatically satisfied.  In other words, the 
Grüneisen parameter appeared to be the function of the volume only, whereas the heat capacity 
appeared to be the function of the entropy density only.  The gCF EOS is, in fact, the most 
general form of the complete EOS that is compatible with the Grüneisen assumption.    

Other examples of complete EOS will be given in the forthcoming papers of this set of reports. 
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  RDRL WMP E 
   W GOOCH  
   B LOVE 
   C KRAUTHAUSER 
  RDRL WMM E 
   J ADAMS 
   L KECSKES 
   J LASALVIA 
   P PATEL 
   J SWAB 
   M WILL-COLE 
  RDRL WMM B 
   B CHEESEMAN 
   C FOUNTZOULAS 
   G GAZONAS  
  RDRL SER L 
   W NOTHWANG 
  RDRLWML H 
   M FERMEN-COKER 
  RDRL WMP 
   B BURNS 
   S SCHOENFELD 
  RDRL WMP D 
   H MEYER 
  RDRL WMP G 
   R BANTON 
   S KUKUCK 
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1 CAVENDISH LAB 
MOTT BLDG  RM 316B 

  JJ THOMSON AVE   
  M CHAUDHRI 
  CAMBRIDGE CB3 0HE 
  UNITED KINGDOM 
 
 1 LOUGHBOROUGH UNIV 

WOLFSON SCHOOL OF MECH & 
MANUFACTURING ENGRG 
LOUGHBOROUGH 

  V SILBERSCHMIDT 
  LE11 3TU 
  UNITED KINGDOM 
 
 1 UNIVERSITY OF LIVERPOOL 
  DEPT OF ENGRG 
  BROWNLOW HILL 
  LIVERPOOL 
  OUYANG 
  L69 3GH 
  UNITED KINGDOM 
 
 4 AWE ALDERMARSTON READING 
  BERKSHIRE RG7 4PR 
  N BOURNE 
  J C F MILLETT 
  G A COX 
  C M ROBINSON 
  UNITED KINGDOM 
 
 1 DEFENCE SCI & TECHLGY 
  ORGANISATION 
  WEAPONS SYSTEMS DIVISION 
  A RESNYANSKY 
  EDINBURGH SA 5111 
  AUSTRALIA 

 
1 CSIRO EXPLORATION & MINING  

  PO BOX 883 
  KENMORE QLD 4069 
  F D STACEY 
  AUSTRALIA 
 
 1 MOSCOW STATE UNIV 
  INSTITUTE OF MECHANICS 
  MICHURINSKIŒ PR 1 

 S S GRIGORYAN 
 MOSCOW 117192 
 RUSSIA 
 

1 STEKLOV MATHEMATICAL 
  INSTITUTE  

 GUBKINA AV 8  
 A G KULIKOVSKII 
 MOSCOW 117966 
 RUSSIA 
 
1 LANDAU INSTITUTE FOR 

  THEORETICAL PHYSICS 
  N INOGAMOV 

RAS CHERNOGOLOVKA 142432 
RUSSIA 

 
 5 JOINT INSTITUTE FOR HIGH 

TEMPERATURE PHYSICS 
  RUSSIAN ACADEMY OF SCIENCES 
  V FORTOV 
  V GRYAZNOV 
  G KANEL 
  M LOMONOSOV 
  S RAZORENOV 
  JIHT RAS MOSCOW  125412 
  RUSSIA 
 
 1 INSTITUTE OF CONTINUOUS MEDIA 

MECHANICS 
  URAL BRANCH OF RAS 
  O B NAIMARK 
  1 ACAD KOROLEV STR 
  PERM 614013 
  RUSSIA 
 
 1 BEN GURION UNIVERSITY 
  DEPARTMENT OF MECHANICAL 

ENGRG 
  E B ZARETSKY 
  PO BOX 653 
  BEER SHEVA 84105 
  ISRAEL 
 
 1 RAFAEL 
  PO BOX 2250 
  Y PARTOM 
  HAIFA 31021 
  ISRAEL 

 
 




